Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Research Program

Research Program

The MINGuS project is devoted to the mathematical and numerical analysis of models arising in plasma physics and nanotechnology. The main goal is to construct and analyze numerical methods for the approximation of PDEs containing multiscale phenomena. Specific multiscale numerical schemes will be proposed and analyzed in different regimes (namely highly-oscillatory and dissipative). The ultimate goal is to dissociate the physical parameters (generically denoted by ε) from the numerical parameters (generically denoted by h) with a uniform accuracy. Such a task requires mathematical prerequisite of the PDEs.

Then, for a given stiff (highly-oscillatory or dissipative) PDE, the methodology of the MINGuS team will be the following

Dissipative problems

In the dissipative context, the asymptotic analysis is quite well understood in the deterministic case and multiscale numerical methods have been developed in the last decades. Indeed, the so-called Asymptotic-Preserving schemes has retained a lot of attention all over the world, in particular in the context of collisional kinetic equations. But, there is still a lot of work to do if one is interesting in the derivation high order asymptotic models, which enable to capture the original solution for all time. Moreover, this analysis is still misunderstood when more complex systems are considered, involving non homogeneous relaxation rates or stochastic terms for instance. Following the methodology we aim at using, we first address the mathematical analysis before deriving multiscale efficient numerical methods.

A simple model of dissipative systems is governed by the following differential equations

for given initial condition (x0,y0)2 and given smooth functions 𝒢, which possibly involve stochastic terms.

Asymptotic analysis of dissipative PDEs (F. Castella, P. Chartier, A. Debussche, E. Faou, M. Lemou)

Derivation of asymptotic problems

Our main goal is to analyze the asymptotic behavior of dissipative systems of the form (3) when ε goes to zero. The center manifold theorem [35] is of great interest but is largely unsatisfactory from the following points of view

Obviously, even at the ODE level, a deep mathematical analysis has to be performed to understand the asymptotic behavior of the solution of (3). But, the same questions arise at the PDE level. Indeed, one certainly expects that dissipative terms occurring in collisional kinetic equations (2) may be treated theoretically along this perspective. The key new point indeed is to see the center manifold theorem as a change of variable in the space on unknowns, while the standard point of view leads to considering the center manifold as an asymptotic object.

Stochastic PDEs

We aim at analyzing the asymptotic behavior of stochastic collisional kinetic problems, that is equation of the type (2). The noise can describe creation or absorption (as in (2)), but it may also be a forcing term or a random magnetic field. In the parabolic scaling, one expect to obtain parabolic SPDEs at the limit. More precisely, we want to understand the fluid limits of kinetic equations in the presence of noise. The noise is smooth and non delta correlated. It contains also a small parameter and after rescaling converges formally to white noise. Thus, this adds another scale in the multiscale analysis. Following the pioneering work [38], some substantial progresses have been done in this topic.

More realistic problems may be addressed such as high field limit describing sprays, or even hydrodynamic limit. The full Boltzmann equation is a very long term project and we wish to address simpler problems such as convergences of BGK models to a stochastic Stokes equation.

The main difficulty is that when the noise acts as a forcing term, which is a physically relevant situation, the equilibria are affected by the noise and we face difficulties similar to that of high field limit problems. Also, a good theory of averaging lemma in the presence of noise is lacking. The methods we use are generalization of the perturbed test function method to the infinite dimensional setting. We work at the level of the generator of the infinite dimensional process and prove convergence in the sense of the martingale problems. A further step is to analyse the speed of convergence. This is a prerequisite if one wants to design efficient schemes. This requires more refined tools and a good understanding of the Kolmogorov equation.

Numerical schemes for dissipative problems (All members)

The design of numerical schemes able to reproduce the transition from the microscopic to macroscopic scales largely matured with the emergence of the Asymptotic Preserving schemes which have been developed initially for collisional kinetic equations (actually, for solving (2) when β0). Several techniques have flourished in the last decades. As said before, AP schemes entail limitations which we aim at overcoming by deriving

Time diminishing methods

The main goal consists in merging Monte-Carlo techniques [33] with AP methods for handling automatically multiscale phenomena. As a result, we expect that the cost of the so-obtained method decreases when the asymptotic regime is approached; indeed, in the collisional (i.e. dissipative) regime, the deviational part becomes negligible so that a very few number of particles will be generated to sample it. A work in this direction has been done by members of the team.

We propose to build up a method which permits to realize the transition from the microscopic to the macroscopic description without domain decomposition strategies which normally oblige to fix and tune an interface in the physical space and some threshold parameters. Since it will permit to go over domain decomposition and AP techniques, this approach is a very promising research direction in the numerical approximation of multiscale kinetic problems arising in physics and engineering.

Uniformly accurate methods

To overcome the accuracy reduction observed in AP schemes for intermediate regimes, we intend to construct and analyse multiscale numerical schemes for (3) whose error is uniform with respect to ε. The construction of such a scheme requires a deep mathematical analysis as described above. Ideally one would like to develop schemes that preserve the center manifold (without computing the latter!) as well as schemes that resolve numerically the stiffness induced by the fast convergence to equilibrium (the so-called transient phase). First, our goal is to extend the strategy inspired by the central manifold theorem in the ODE case to the PDE context, in particular for collisional kinetic equations (2) when β0. The design of Uniformly Accurate numerical schemes in this context would require to generalize two-scale techniques introduced in the framework of highly-oscillatory problems [36].

Multiscale numerical methods for stochastic PDEs

AP schemes have been developed recently for kinetic equations with noise in the context of Uncertainty Quantification UQ [41]. These two aspects (multiscale and UQ) are two domains which usually come within the competency of separate communities. UQ has drawn a lot of attention recently to control the propagation of data pollution; undoubtedly UQ has a lot of applications and one of our goals will be to study how sources of uncertainty are amplified or not by the multiscale character of the model. We also wish to go much further and by developing AP schemes when the noise is also rescaled and the limit is a white noise driven SPDE, as described in section (3.1.1.1). For simple nonlinear problem, this should not present much difficulties but new ideas will definitely be necessary for more complicated problems when noise deeply changes the asymptotic equation.

Highly-oscillatory problems

As a generic model for highly-oscillatory systems, we will consider the equation

for a given u0 and a given periodic function (of period P w.r.t. its first variable) which possibly involves stochastic terms. Solution uε exhibits high-oscillations in time superimposed to a slow dynamics. Asymptotic techniques -resorting in the present context to averaging theory [45]- allow to decompose

into a fast solution component, the εP-periodic change of variable Φt/ε, and a slow component, the flow Ψt of a non-stiff averaged differential equation. Although equation (5) can be satisfied only up to a small remainder, various methods have been recently introduced in situations where (4) is posed in n or for the Schrödinger equation (1).

In the asymptotic behavior ε0, it can be advantageous to replace the original singularly perturbed model (for instance (1) or (2)) by an approximate model which does not contain stiffness any longer. Such reduced models can be derived using asymptotic analysis, namely averaging methods in the case of highly-oscillatory problems. In this project, we also plan to go beyond the mere derivation of limit models, by searching for better approximations of the original problem. This step is of mathematical interest per se but it also paves the way of the construction of multiscale numerical methods.

Asymptotic analysis of highly-oscillatory PDEs (All members)

Derivation of asymptotic problems

We intend to study the asymptotic behavior of highly-oscillatory evolution equations of the form (4) posed in an infinite dimensional Banach space.

Recently, the stroboscopic averaging has been extended to the PDE context, considering nonlinear Schrödinger equation (1) in the highly-oscillatory regime. A very exciting way would be to use this averaging strategy for highly-oscillatory kinetic problem (2) as those encountered in strongly magnetized plasmas. This turns out to be a very promising way to re-derive gyrokinetic models which are the basis of tokamak simulations in the physicists community. In contract with models derived in the literature (see [34]) which only capture the average with respect to the oscillations, this strategy allows for the complete recovery of the exact solution from the asymptotic (non stiff) model. This can be done by solving companion transport equation that stems naturally from the decomposition (5).

Long-time behavior of Hamiltonian systems

The study of long-time behavior of nonlinear Hamiltonian systems have received a lot of interest during the last decades. It enables to put in light some characteristic phenomena in complex situations, which are beyond the reach of numerical simulations. This kind of analysis is of great interest since it can provide very precise properties of the solution. In particular, we will focus on the dynamics of nonlinear PDEs when the initial condition is close to a stationary solution. Then, the long-time behavior of the solution is studied through mainly three axis

Asymptotic behavior of stochastic PDEs

The study of SPDEs has known a growing interest recently, in particular with the fields medal of M. Hairer in 2014. In many applications such as radiative transfer, molecular dynamics or simulation of optical fibers, part of the physical interactions are naturally modeled by adding supplementary random terms (the noise) to the initial deterministic equations. From the mathematical point of view, such terms change drastically the behavior of the system.

Numerical schemes for highly-oscillatory problems (All members)

This section proposes to explore numerical issues raised by highly-oscillatory nonlinear PDEs for which (4) is a prototype. Simulating a highly-oscillatory phenomenon usually requires to adapt the numerical parameters in order to solve the period of size ε so as to accurately simulate the solution over each period, resulting in a unacceptable execution cost. Then, it is highly desirable to derive numerical schemes able to advance the solution by a time step independent of ε. To do so, our goal is to construct Uniformly Accurate (UA) numerical schemes, for which the numerical error can be estimated by Chp (h being any numerical parameters) with C independent of ε and p the order of the numerical scheme.

Recently, such numerical methods have been proposed by members of the team in the highly-oscillatory context [36]. They are mainly based on a separation of the fast and slow variables, as suggested by the decomposition (5). An additional ingredient to prove the uniformly accuracy of the method for (4) relies on the search for an appropriate initial data which enables to make the problem smooth with respect to ε.

Such an approach is assuredly powerful since it provides a numerical method which enables to capture the high oscillations in time of the solution (and not only its average) even with a large time step. Moreover, in the asymptotic regime, the potential gain is of order 1/ε in comparison with standard methods, and finally averaged models are not able to capture the intermediate regime since they miss important information of the original problem. We are strongly convinced that this strategy should be further studied and extended to cope with some other problems. The ultimate goal being to construct a scheme for the original equation which degenerates automatically into a consistent approximation of the averaged model, without resolving it, the latter can be very difficult to solve.